© British Computer Society 2001

Comment on ‘A Framework for
Modelling Trojans and Computer
Virus Infection’

ERKKI MAKINEN

Department of Computer and Information Sciences, P.O. Box 607,
FIN-33014 University of Tampere, Finland
Email: em@cs.uta.fi

We (re-)introduce a Turing machine model for computer viruses. Despite the recent criticism of

Turing machine models, they enjoy important advantages: their well-known notation and rich

theory make them easy to understand and to elaborate. For many natural problems concerning

computer viruses, e.g. for various decidability problems, Turing machine models provide a suitable
platform of research.

Received 24 November 1999; revised 19 February 2001

1. INTRODUCTION

Thimbleby et al. [1] have recently introduced a frame-
work for modelling computer viruses and other malicious
programs. They also criticized the use of Turing machine
(TM) models for the same purpose. This note (re-)introduces
a universal Turing machine (UTM) model which originally
appeared in [2] and discusses its properties in the light of
Thimbleby et al.’s critique. We show that their points are
not valid in the case of models using UTMs.

We show that (universal) TMs can serve as a basis of
a model illustrating the properties of viruses and other
malicious programs. An obvious benefit of our model is that
TMs and their properties are so widely known. This gives
a considerable ‘competitive advantage’ to our model and
compensates for the fact that TM models are a bit clumsy.

A typical model using TMs is presented by Cohen [3].
The concept of viral sets is essential in the model. A viral
set is a pair (M, W) where M is a TM and W is a set of
strings over its tape alphabet. Each string w in W has the
property that when M, being in its start state, starts reading
w it always writes another string w’ of W to somewhere else
in its tape. Hence, each w in W is a virus and when M (i.e.
‘a computer’) reads it, another virus will appear somewhere
in its tape (i.e. in its ‘memory’). Cohen’s model allows us
to directly apply the well-known undecidability results for
TMs, e.g. it follows from the halting problem of TMs that
it is undecidable whether or not a given pair (M, {w}) is a
viral set.

The shortcomings of Cohen’s model are discussed in [2].
Most of the critiques of Thimbleby et al. [1] are appropriate
in the case of Cohen’s model.

Instead of a TM we use the UTM as a model of a
computer. Viruses are then descriptions of TMs causing
other descriptions to be written to the tape of the UTM.

In Cohen’s model the set of viruses depends on the TM
on which they are interpreted. In our modification the set
of viruses depends on the rules according to which the
descriptions of TMs are written.

2. TURING MACHINES

We assume a familiarity with TMs, decidability and related
topics as given, e.g., in [4], where unexplained concepts are
to be found.

ATMisa7-tuple M = (Q, X, T, 6, qo, B, F), where

Q is the finite set of states,

I is the finite set of tape symbols,

B is a special symbol in I, the blank symbol,

%, a subset of I' not including B, is the set of input
symbols,

e § is the next move partial function from Q x T' to
O x I' x {left, right},

qo in Q is the start state and

F, a subset of Q, is the set of final states.

We can suppose without loss of generality that TMs have
a unique final state. The structure of M can be entirely
described by the set of valid moves provided that the start
state and the final state can be inferred from the encoding
used.

Suppose the states in Q and the alphabets in I" are named
by {q1,...,qn} and {ay, ..., a,}, and the directions left and
right are denoted by dj and d, respectively. Then a move
8(qgi,aj) = (qk, ai, dy) can be encoded by a binary string

0'10/10%10'10™.
A binary code for a whole TM is

111(code1)11{codex)11 ... 11{code,)111,

THE COMPUTER JOURNAL,

Vol. 44, No.4, 2001

322 E. MAKINEN

where each (code;), r =1, ..., p, is an encoding of a move
according to § and p is the number of such moves [4].

Given the above code for M and the initial tape contents,
the UTM U is capable of simulating the computation of
M. It is obvious that there are encodings whose simulation
produces other encodings having this same property to the
tape of U.

3. WHATIS A VIRUS?

In Cohen’s model a string w (a virus) in W has the property
that when M, being in its start state, starts reading w it
always writes another string w’ of W to somewhere else in its
tape. In our model a computer virus is a description of a TM
whose simulation by the UTM causes another description
of a viral TM to appear to the tape of the UTM. A virus
can also modify existing TMs (i.e. programs) in the tape.
As an example (sketch), consider a TM T performing the
following tasks:

1. find a description of some other TM, say T, from the
tape;

2. insert a special symbol into the beginning of the initial
tape contents of 7”;

3. supplement the encoding of T’/ by moves having the
effects described in the items (a)—(c) below,

(a) reading the new symbol from the tape causes T’
to enter into a new subsystem of states,

(b) acopy of T is inserted into the description of 77,
and

(c) the control is returned to the start state of 7’ and
the head of T’ is moved to the first cell of the
original tape contents.

Thimbleby et al. [1] have a finer classification of
malicious programs in their model. We could also increase
the concreteness of our TM model by defining masquerades,
Trojans etc. However, the appropriate level of the model
depends on its actual use. If we are interested in the basic
undecidability results concerning viruses and their detection,
the present level is sufficient.

In what follows, we show that contrary to Thimbleby
et al.’s critique [1, Section 2], TM models are useful in
modelling computer viruses.

The first argument of Thimbleby er al. concerns the
level of abstraction in TM models, i.e. concepts like
‘masquerading’ and ‘infection’ are not present in TM
models. This is true for existing models, but there is no
reason preventing us sharpening the above model based on
UTMs to any level of fine granularity.

Steps 1-3 above describe one possible way to perform
infection. = Masquerading, in turn, involves a naming
convention of programs. In our case, a name of a program
could be a bit string in its encoding. Masquerading means
that the encoding of a malicious program contains the same
bit string falsely naming the program. This is not difficult to
implement in the tape of a UTM irrespective of the function
of the TM containing the masquerading bit string.

Their second argument concerns the ‘other’ programs. In
conventional TM models there are no ‘other’ programs to
be infected. This, of course, is not a problem in UTM based
models where the tape may contain any number of programs,
‘normal’ programs as well various malicious ones.

The third argument of Thimbleby et al. deals with self-
awareness of infection: it should be possible to infect
a program such that it cannot tell that the infection has
happened, i.e. the reliable judgement whether or not a
program is infected depends on an internal mechanism that is
not affected by the infection. More specifically, Thimbleby
et al. find it problematic that in most TM models of virus
infection the effect of the virus is not visible; the running of
the program is either unchanged or it becomes incorrect.

Although this critique holds for the TM models cited
in [1], there should be no problems in sharpening the
TM models in this respect. Consider again steps 1-3
above. In step 3(a) the infected TM jumps to perform
some undesirable activities. This jump can be easily made
dependable on a condition outside the infected TM, e.g. on
the contents on a certain tape position. Now the effect of
the infection can vary in different executions of the infected
TM.

Fourth, Thimbleby et al. suggest that the model should
allow self-replication. Lee [5] has described a TM capable of
outputting its own description (see also [6, Problem 7.4-3.]).
Such a TM is quite sufficient for our purposes. Thimbleby
et al. find it restricting that this kind of self-replication
property is up to representation. We do not find it as a
restriction. It fact, the whole model is up to representation.
Namely, we fix the representation for TMs appearing in
the tape of the UTM. Another coding would end up with
different kinds of representation for all parts of the model.

The fifth and last argument by Thimbleby et al. concerns
time and space requirements. They point out that some
viruses do their damage by consuming time and space, and
that this has no consequences in TM models where speed
and space are immaterial. Again, this is a matter of the level
of abstraction. Time and space requirements for TMs can
be defined, but it is questionable whether the effects of such
viruses are meaningful to measure in an abstract model.

4. CONCLUDING REMARKS

We have (re-)introduced a universal TM model for computer
viruses, and have evaluated its merits against the critique by
Thimbleby et al. The key concept is the level of abstraction.
What are you doing with your model? For many purposes,
especially including those related to the basic undecidability
questions concerning computer viruses, the UTM model
discussed seems to be quite appropriate.

ACKNOWLEDGEMENT

This work was supported by the Academy of Finland
(Project 35025).

THE COMPUTER JOURNAL,

Vol. 44, No.4, 2001

COMMENT ON ‘A FRAMEWORK FOR MODELLING TROJANS AND COMPUTER VIRUS INFECTION’ 323

REFERENCES

[1] Thimbleby, H. W., Anderson, S. O. and Cairns, P. (1998) [4] Hopcroft, J. E. and Ullman, J. D. (1979) Introduction to
A framework for modelling Trojans and computer virus Automata Theory, Languages, and Computation. Addison-
infection. Comp. J., 41, 444-458. Wesley, Reading, MA.

[2] Kauranen, K. and Mikinen, E. (1990) A note on Cohen’s [5] Lee, C. (1963) The construction of a self-describing Turing
formal model for computer viruses. ACM SIGSAC Rev., 8, machine. In Fox, J. (ed.), Mathematical Theory of Automata,
40-43. pp. 155-164. Polytechnic, Brooklyn, NY.

[3] Cohen, F. (1989) Computational aspects of computer viruses. [6] Minsky, M. (1972) Computation: Finite and Infinite
Comp. Security, 8, 325-344. Machines. Prentice-Hall, London.

THE COMPUTER JOURNAL, Vol.44, No.4, 2001

